acceleration spectrum meaning in Chinese
加速度谱
Examples
- In chapter 3 , this paper recommended the methods of estimating the parameter of moving target using cyclostationary and analyzed the performance of this method firstly , and put forward a recursive method for estimating the parameter ( velocity , acceleration ) of moving target combining the characteristic of high - prf pulsed doppler radar . then , based on the resolution of doppler and acceleration , combining the characteristic of the doppler spectrun and acceleration spectrum , this paper put forward a new method for differentiating muli - target
然后,从弹载高重频脉冲多普勒雷达的多普勒分辨率和加速度分辨率出发,结合不同编队方式的多目标回波信号的特点,分析了多目标和单个目标的回波信号的多普勒谱和加速度谱的特性,提出了一种基于一维多普勒像和一维加速度像的级次多目标分辨算法。 - B ) relative velocity response spectrum ( sv ) and relative displacement response spectrum ( sd ) : the variation of velocity spectrum with depth is similar to that of acceleration spectrum . but the variation of displacement spectrum with depth is a little different to that of acceleration and velocity spectrum . that is , in strong earthquake , the variation of displacement spectrum and normalized spectrum in different depth is very small
( 2 )速度反应谱( s 、 )和位移反应谱( sd )沿深度变化的规律速度反应谱沿深度变化的特点与加速度反应谱基本相似;位移反应谱沿深度变化的特点与加速度和速度反应谱有较小差别,即强震时位移反应谱和标准位移反应谱沿深度的变化很小。 - Based on frequency - spectrum - transformation , this algorithm first changes acceleration spectrum into displacement spectrum , then calculates its amplitude , angular frequency and initial angle related to every displacement spectrum , finally sums up all the displacement components and forms the time course of the measured vibration
该方法采用频谱转换法,首先将加速度谱转换成位移谱,再计算出位移谱中每个频率分量对应的幅值、圆频率和初相角,最后对各位移分量进行叠加得到振动位移的时间历程。
Related Words
- acceleration globulin
- academic acceleration
- acceleration setter
- cenrtipetal acceleration
- plasma acceleration
- level acceleration
- acceleration illusion
- abrupt acceleration
- rotary acceleration
- acceleration generator
- acceleration space
- acceleration space dimension
- acceleration sprint
- acceleration stability derivatives